

AIRS - AMSR-E Total Water Vapor Comparisons

AIRS Science Team Meeting May 3-6, 2005

Eric J. Fetzer
California Institute of Technology
Jet Propulsion Laboratory

JGR Paper in preparation:

Comparison of Total Water Estimates from AIRS and AMSR-E

Eric J. Fetzer, H. H. Aumann, M. T. Chahine, Annmarie Eldering, Bjorn Lambrigtsen

Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA.

2 May 2005

In preparation for Journal of Geophysical Research-Atmospheres Special Section on AIRS Validation

Approach and Goals

Approach

- Take advantage of AMSR-E strength: total water vapor for non-precipitating clouds.
 - ...but, AMSR-E calibration 'challenges' mean quantities are regressed against a variety of correlative data sets.

Goals of Comparison

- 1. Conditions giving consistency between the two data sets.
- 2. Quantify information added by infrared channels / cloud clearing.
- 3. Understand effects of HSB loss.
- 4. Scan-angle effects.
- 5. Climatological biases in mean fields.
 - For both microwave-only and full AIRS retrievals.
 - Implications for height-resolved water vapor climatologies and process studies.

The Advance Microwave Scanning Radiometer for Eos (AMSR-E)

- A conically-scanning microwave radiometer on Aqua
 - Follow-on to SSM/I
 - Constant emission angle
 - Sampling interval ~10 km, placed on 0.25 degree grid.
 - Over-ocean measurements of
 - Sea ice concentration
 - Cloud liquid water
 - Precipitation amount
 - Surface wind speed
 - Sea surface temperature
 - Precipitable water vapor
- All over-water AIRS FOVs have matched, instantaneous AMSR-E observations (except at highest scan angles).

Jet Propulsion Laboratory California Institute of Technology

Six Possible Cases for AIRS-AMSR Matches

(by decreasing yield)

	Case 1 MW-Only with AMSR	Case 2 Full Ret with AMSR	<u>Case 3</u> AMSR Only	Case 4 MW-Only No AMSR	<u>Case 5</u> Full Ret No AMSR	Case 6 No Nothing
AIRS Full Retrieval Qual_Cloud_OLR = 0	No	Yes	No	No	Yes	No
Qual_Temp_Bot = 0						
AIRS MW Partial Petrieval Qual_Cloud_OLR = 0 Qual_Temp_Bot = 1	Yes	No	No	Yes	No	No
AMSR-E Water Vapor Retrieval	Yes	Yes	Yes	No	No	No

50S - 50N Over-Ocean Yields by Case (Percent of total counts) for Two Periods

		Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Total counts
2003.12.25-		MW Ret	Full Ret	AMSR	MW Ret	Full Ret	No	
2003.01.09		w/AMSR	w/AMSR	Only	Only	Only	Nothing	
	Combined	41	35	12	4	3	2	2,081,022
	Day/Night	40 / 42	36 / 34	12 / 12	4 / 4	4 / 3	2 / 1	49 / 50
2003.05.01-								
2003.05.16								
	Combined	37	42	11	3	3	1	2,065,666
	Day Night	37 / 37	42 / 43	11 / 12	3 / 3	3 / 2	1 / 1	49 / 50

Notes:

- No significant day/night biases in yields, but...
 January to May yields for Cases 1 & 2 shift by ~5%.
 -Due to lost HSB or seasonal differences?
- About 12 percent of AIRS FOVs have AMSR, but no AIRS retrieval.

50S - 50N means can vary...

	AMSR Mean, Cases 1-3	Case 1	Case 2	Case 3	Case 4	Case 5
2003.12.25-2003.01.09		AMSR / AIRS	AMSR / AIRS	AMSR Only	AIRS MW only	AIRS Full Ret
Global Combined	29.0 mm	-1.6 / -2.7 %	1.6 / 1.0 %	14.0 %	0.3 %	-0.6 %
Day	30.6 mm	-2.0 / -1.9 %	-9.0 / -9.1 %	10.4 %	-3.6 %	-9.7 %
Night	27.6 mm	-1.2 / -3.6 %	10.8 / 9.8 %	17.3 %	3.7 %	8.6 %
2003.05.01-2003.05.16						
Global Combined	30.4 mm	2.2 / -1.8 %	4.6 / 1.3 %	10.5 %	1.1 %	2.8 %
Day	31.3 mm	0.7 / -1.4 %	-2.4 / -4.9 %	8.4 %	-2.7 %	-6.2 %
Night	29.4 mm	3.7 / -2.2 %	11.1 / 7.0 %	12.6 %	4.9 %	11.5 %

MW-only means always near AMSP mean.

AMSR-only always wetter than AMSR mean.

Full retrieval biases vary over ±10 %,
BUT track matched AMSR.

Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Global results suggest *local* differences, => Look at maps of differences.

Approach

- Generate maps of mean water vapor for Cases 1-5
- Look at fractional differences in biases relative to AMSR-E means.

Biases we will see are due to sampling differences.

· ...so the fundamental retrieval methodologies appear sound

--BUT--

Sampling biases in total water have important implications for height-resolved climatologies from AIRS

· ...though any data (AIRS) is better than little or none!

Mean climatologies agree best with matched FOVs (Cases 1 and 2)

AIRS-AMSR Percent Difference

AMSR Mean (Cases 1 & 2) 16 days, winter 02-03

AIRS Qual_Cloud_OLR = 0 (Cases 1 & 2); 100.*[Mean(AIRS)-Mean(AMSR)] / Mean(AMSR)

BUT, compare climatologies carefully...

E. g., larger *regional* sampling biases for means over all AMSR versus all AIRS

AMSR Mean, Cases 1-3 16 days, winter 02-03

AIRS Case 1 & 2 Percent Difference Relative to AMSR to left

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Rehashing last two comparisons: Case 3 matters, though only 12% of all FOVs!

AIRS (Case 1 & 2) Percent Difference
Relative to Matched AMSR (Cases 1 & 2)

AIRS (Case 1 & 2) Percent Difference Relative to All AMSR (Cases 1, 2 & 3)

111

Jet Propulsion Laboratory Comparing the 'best' from both instruments gives
California Institute of Technology
Pasadena, California Institute of Technology
P

AIRS full retrievals (Case 2) relative to All AMSR (Cases 1-3)

AIRS is: Mostly neutral to dry; WET in stratus regions; DRY in heavy clouds

Differences by Total Water and Cloud Amount

Conclusion: Cloud clearing does not introduce biases by cloud amount, and IR adds information.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Effect of Loss of HSB 50S-50N, 3 Jan 2003

These need to be examined systematically with 16 days of retrievals.

Some Conclusions: Sampling Biases

Globally, AIRS is slightly drier than matched AMSR-E.

--- but ---

- The local picture is more complex:
 - Full AIRS retrievals are wetter in stratus regions
 - MW adds some information in cold air outbreaks, but not in subtropical stratus
 - <u>Hypothesis</u>: stratus regions are doudy and dry => AIRS not observing prevalent conditions.
 - Means over all AIRS retrievals are drier in midlatitude storm systems and other regions with high clouds
 - <u>Hypothesis</u>: high, thick douds lead to fewer AIRS retrievals, and are correlated with wetter underlying atmospheric.
 - About 10% of AIRS oceanic FOVs have no AIRS retrievals, but include AMSR-E information. Most commonly seen in high-latitude storms. These (AMSR-only) FOVs are wetter than average.
 - <u>Hypothesis</u>: doudier regions are wetter and more likely to be precipitating over an AMSU FOV => no AIRS / AMSU retrieval. AMSR-E better able to discern precipitating douds.

Closing Remarks and Future Work

Cloud clearing:

- Cloud-cleared radiances have more information than microwave, based on RMS differences.
- · Full retrievals are not biased with cloud amount.
- The loss of HSB leads to amount-dependent biases.
 - Now comparing 16 days with and without HSB to better understand this.

Climatologies:

- A complete AIRS water vapor climatology (including one from profiles) will require careful interpretation by atmospheric state.
 - Atmospheric processes are a critical part of the interpretation.

Next steps

- Microwave Limb Sounder on Aura measures water vapor in the upper troposphere
 - Potential for analyses like the AMSR-E comparison shown here, but for height-resolved water vapor.
 - · Bill Read of MLS team has started this.
- Annmarie Eldering is comparing AIRS and TES water vapor retrievals.